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Abstract. Metaheuristics are employed for the solution of the phase unwrapping 
problem (for 3D object reconstruction) by the branch cuts method, posed as an 
analogous of the traveling salesman problem, which is an NP-hard decision prob-
lem. The metaheuristic algorithms carry out a global search for the optimal con-
figuration of the so-called branch cuts which corresponds to a pairing of discon-
tinuities with opposed sign in the wrapped phase map. Three representative algo-
rithms of different metaheuristic families are compared: discrete Particle Swarm 
Optimization (from bioinspired algorithms), Genetic Algorithms (from evolu-
tionary algorithms) and a novel Estimation of Distribution Algorithm presented 
in this work that follows a Multinomial distribution. These metaheuristics are 
comparatively evaluated according to the quality of the solutions achieved, exe-
cution time and computational cost, with the aim of building a robust and auto-
mated algorithm competitive against traditional methods.  
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1 Introduction 

The phase of a signal is often defined within its principal values only, either in (−�, �] 
or (0, 2�], and it is called true or wrapped phase [1]. In practical applications such as 
3D object reconstruction, it is necessary to obtain the phase as a continuous function 
through a process known as phase unwrapping, which is a technique used to remove 
the embedded discontinuities in wrapped phase maps [1][2]. The process must detect 
the 2� discontinuities in the phase and add or subtract 2� an integer number of times 
to compensate for each discontinuity in subsequent points [3]–[8]. 

Phase unwrapping algorithms in 2D are most typically divided into two categories: 
path following or branch cuts methods, and minimum norm methods [2]. The branch 
cuts method isolates those regions of a phase map that are affected by discontinuities. 
This is done by the use of barriers or branch cuts, that connect two discontinuity loca-
tions, thus achieving path independence [7]. Since its introduction in Goldstein’s work 
in 1988 [9], the branch cuts method has been improved by the incorporation of artifi-
cial intelligence techniques (particularly soft computing) [4],[10]. In this work, the 
branch cuts problem is posed as a computational optimization problem and a compara-
tive evaluation between three types of metaheuristic algorithms is carried out in order 
to determine their advantages in the solution of said problem. A discrete version of a 
very popular bio-inspired algorithm, known as Particle Swarm Optimization (d-PSO), 
is compared against an evolutionary algorithm (Genetic Algorithm) and against a novel 

21

ISSN 1870-4069

Research in Computing Science 147(11), 2018pp. 21–30; rec. 2018-03-14; acc. 2018-05-22



estimation of distribution algorithm: the Multinomial Estimation of Distribution Algo-
rithm (MEDAL). These algorithms are conceptually very different, but whether or not 
their differences may represent an intrinsic advantage for any of them, is yet to be de-
termined. The goal of this paper is to answer that question. 

The rest of this paper is organized as follows: Section 2 provides the required mate-
rial to understand the formulation of the branch cuts method as an optimization prob-
lem. Section 3 briefly presents the different algorithms that are compared. Our experi-
mental methodology and results are reported in Section 4. Finally, Section 5 presents 
our conclusions and directions for future work. 

2 Phase Unwrapping as Optimization Problem 

Ghiglia and Pritt explain that there are relatively few inconsistencies along a closed 
path within a 2D wrapped phase map [2]. These inconsistencies are identified at points 
where: ∑ ∆
(��
 = ±2��

� , where ∆
(��
 represents the wrapped phase gradient at 
point �� 	�	��� and � is the total amount of points along the path � [2][11][12]. It fol-
lows that there are inconsistencies with positive polarity (2�) and with negative polari-
ty (−2�). In 1988 Goldstein used the term residue to describe such inconsistencies and 
described a method where the charge (sign) of each residue must be balanced out by 
connecting pairs of residues with opposing polarities; this method is known as the 
branch cuts method [9]. In practice, the residues are computed as the sum of the gradi-
ents along a 2 × 2 path (counterclockwise) given in Eqns. (1) to (4). Whenever said 
sum gives a positive result, a positive residue exists at position (�, �
; if the sum is 
negative, a negative residue is present; if the sum is zero then there is no residue: 

∆�(1
 = sign�
(� + 1, �
 − 
(�, �
�, (1)

∆�(2
 = sign�
(� + 1, � + 1
 − 
(� + 1, �
�, (2)

∆�(3
 = sign�
(�, � + 1
 − 
(� + 1, � + 1
�, (3)

∆�(4
 = sign�
(�, �
 − 
(�, � + 1
�. (4)

Once the residues have been identified these are connected in pairs of opposing po-
larity, forming barriers called branch cuts [9]. Then the phase can be unwrapped along 
any path without touching these barriers. Many different branch cuts configurations 
can be formed, affecting the complexity of the phase unwrapping process differently. 
Thus, the phase unwrapping problem is converted into a problem of finding the pairing 
of residues that produce the optimal branch cuts configuration. 

Two branch cuts configurations are shown in Fig. 1. As can be seen, the pairing of 
residues in Fig. 1b produced four branch cuts that will make phase unwrapping diffi-
cult; the barriers are long and badly arranged (crossing each other). In contrast, the 
pairing in Fig. 1c also produces four branch cuts but their configuration is much more 
favorable for the phase unwrapping; the barriers are shorter and better distributed. No-
tice that one of the residues in both configurations has been joined with the border of 
the phase map. This is acceptable since there is not always an equal amount of positive 
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and negative residues [7]. An efficient algorithm for this problem must find the pairing 
of residues that produces the branch cuts configuration with minimum total length. 
Then the data can be unwrapped by the flood fill algorithm [11].  

  
 

 

 

 

Fig. 1. Two different branch cuts configurations. a.- A set of residues. b.- Unfavorable pairing 
produces a bad configuration. c.- A different pairing produces an optimal configuration. 

The optimization of the branch cuts problem is analogous to a combinatorial prob-
lem known as the Traveling Salesman Problem (TSP), which can be summarized as 
follows [4, 7]: a salesman must visit $ cities by means of the shortest possible path; he 
must visit each city only once and return to the initial city in the end. When the number 
of cities increases, the TSP cannot be solved in polynomial time since its complexity 
grows exponentially (it becomes an NP-hard problem). The branch cuts problem is 
formulated as a TSP problem if the residues are the cities and the sum of the lengths of 
the branch cuts are the path that the salesman travels [8]. Metaheuristics are effective 
optimization methods that can be used to tackle this sort of problems.  

3 Optimization Metaheuristics for Phase Unwrapping 

The different metaheuristic techniques that are compared in this work all share a com-
mon codification of the candidate solutions. An individual solution consists in a pairing 
of residues of opposing polarities (or one residue and one border position). This can 
always be reorganized as a vector of positive residues and a vector of corresponding 
negative residues paired with the positive ones. Starting from one solution, new solu-
tions can be generated by keeping the vector of positive residues fixed and changing 
the position of the negative residues [4]. This is illustrated in Fig. 2 with a small num-
ber of residues and wherein some border points, represented by ‘B’s are included. 

All of the metaheuristics discussed herein maintain a so-called population of solu-
tions that they employ to perform their search in the solution space. An initial solution 
can be found, for example, by application of a simple local search method known as 
the nearest neighbor method [7]. From this, a population of new solutions is generated 
automatically by randomly selecting and reordering of % elements in the vector of neg-
ative residues. Repeated application of this process creates an initial population.  

In order to guide their search for a global optimum, the algorithms evaluate the 
quality of the individual solutions that are explored. Said quality is quantitatively cap-
tured by a so-called fitness function, &. In the case of the branch cuts problem the op-
timal solution is the branch cuts configuration of minimal total length. Thus, the fitness 
function is simply the sum of the lengths (distance between each pair of residues in a 
solution) of branch cuts ((', () is a residue location), as seen in Eq. (5): 

& = ∑ )('�
* − '�

+
, + ((�
* − (�

+
,]-/,/
� . (5) 

  a    b  c 
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Fig. 2. Codification of solutions. The positive residues are kept in fixed positions; reordering of 
the negative residues (paired with the positive residues) produces other solutions. 

3.1 Bioinspired Algorithm 

The particle swarm optimization algorithm (PSO) was developed by Kennedy and 
Eberhart [12] as a population-based optimization method, inspired on the social behav-
ior of bird flocks. Its objective is to generate increasingly better candidate solutions in 
an iterative way to reach the optimum [13]. Due to the small number of its parameters, 
its rapid convergence and its simple implementation, PSO shows better performance 
than some evolutionary algorithms [13]. PSO is based on the idea of 0-dimensional 
particles moving inside a swarm [4]. The information that the 1-th particle uses to 
move through the search space is the current value of its position 23, its velocity 43, its 
best past position �3, and the best global position of the swarm �5. 

Table 1. Pseudocode of the PSO algorithm. 

PSO algorithm 

1: Initialize population of 0-dimensional particles with random positions and velocities  

2: Start the loop 
3: Evaluate the quality of each particle (solution), according to the fitness function. 

4: 
Compare each solution with its �3: if the current value is better,  

then update �3 and 23 with the current solution values. 

5: Identify the best solution and assign it to �5. 

6: 
Update the velocity and the position of each particle: 
43
6*- = (7 × 43

6
 + )8- × 9:$; × <�3
6 − 23

6=] + )8, × 9:$; × <�56 −23
6=] 

23
6*- = 23

6 + 43
6*- 

7: If the stopping criterion is met, stop the cycle. 

8: End the loop 
 
The original process to implement PSO is described in Table 1 [14],  where > denotes 
the iteration number, 8- and 8, are non-negative learning factors, the function 9:$; 
generates a random number in (0,1) and 7 is called the inertia factor. A more detailed 
explanation of these variables is found in [14]. In this work, a discrete variant of the 
algorithm, termed d-PSO is used because it better fits the branch cuts problem. The 
modifications are detailed in [4]. In d-PSO the velocity represents a set of permutations 
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[4]; the permutations modify the position vector, rearranging its values. In this work 
the adjustment operator is followed in the same way as in [14]. 

3.2 Evolutionary Algorithm 

The genetic algorithm is also a population-based technique inspired by the mechanisms 
of natural selection, genetics and evolution of living beings that has proved effective, 
quick and robust in many optimization problems [15]. Members of the population are 
called chromosomes [16], and they are formed by a set of 0 genes in 0-dimensional 
space. Chromosomes perform their own adaptation strategies to evolve through the 
search space and reach the global optimum [7]. A new generation occurs when three 
operators that update the population are applied: selection, crossover and mutation 
[16]. The basic steps of the GA are described in Table 2.  

Table 2. Pseudocode of the Genetic Algorithm. 

Genetic Algorithm 

1: Initialize chromosome population, probability of reproduction �? and mutation �@. 

2: Start the loop 

3: Evaluate the quality of each solution, according to the fitness function. 

4: Use a selection operator to choose two parent chromosomes. 

5: If AB,	Apply the crossover operator. End if 

6: If AC,	Apply the mutation operator. End if 

7: Accept the new solution if its quality is better. 

8: If the stopping criterion is met, stop the cycle. 

9: End the loop 

 
The selection operator chooses a pair of chromosomes for crossover, allowing their 
genes to pass to the next generation [16]. The crossover operator combines some of the 
genes of each of the parent chromosomes; both chromosomes are split in the middle 
and the four parts are combined to form two offspring [7]. Subsequently, the quality of 
the new chromosomes is measured and only the best is passed on to the next generation 
[17]. The mutation operator forms a new chromosome through alterations of a chromo-
some [7]. The heuristic twors is used for this purpose [18]. 

3.3 Multinomial Estimation of Distribution Algorithm 

An estimation of distribution algorithm (EDA) is a population-based optimization 
technique that tracks the statistics of a population of candidate solutions [19]. The 
search for the global optimum is carried out by creating new and better solutions 
through these statistics, i.e., recreating the population iteratively and updating the sta-
tistics based on the best individuals in each generation [19]. This concept was taken as 
guidance to design a multinomial distribution EDA for discrete values, since this dis-
tribution models the probability of % categories in $ trials, which fits well the branch 
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cuts problem. The steps followed by this Multinomial Estimation of Distribution Algo-
rithm (MEDAL) are shown in Table 3.  

Table 3. Pseudocode for the Multinomial Estimation of Distribution Algorithm. 

MEDAL algorithm 
1: Initialize a population of random candidate solutions �D��E, F	�)1, G]. 
2: Start the loop 
3: Evaluate each solution according to the fitness function. 

4: Select the best � individuals from the population �D��6, (� < G). 

5: Estimate a multinomial distribution from the selected � individuals.  

6: Generate a new population �D��I*- sampling from the multinomial distribution. 

7: If the stopping criterion is met, stop the cycle. 

8: End the loop 
 
During execution of the method, new populations are generated with new probabili-

ties of occurrence per position. The objective is that all individuals converge to one, 
i.e., the probability of occurrence of a value in a position becomes equal to one (or as 
high as possible). When this happens, the algorithm ends. Due to the almost null exist-
ence of parameters to be tuned, the EDAs are considered agile and efficient algorithms, 
achieving convergence in a short time despite their susceptibility to get stuck in local 
optima.  

4 Experimental Results and Discussion 

The algorithms discussed above were implemented to solve the branch cuts problem 
and obtain an effective 3D reconstruction of test objects. Each of three test objects is a 
512 × 512 pixels image generated through the MATLAB peaks function. For each of 
these, a wrapped phase map was obtained through the arctangent function. The resi-
dues in each map were identified by application of Eqs. (1)-(4) as explained in Section 
2. Different residue sets were obtained for each map: 1511 residues in the first image 
(757 positives, 754 negatives); 995 residues in the second image (493 positives, 502 
negatives); 1542 residues in the third image (772 positives, 770 negatives). These resi-
dues were given to each metaheuristic, together with an initial population of random 
solutions. This process was repeated 35 times per test image to provide statistical sup-
port to our conclusions. Identical initial populations were given to all algorithms in 
each trial to ensure a fair comparison. The initial populations included 500 solutions 
each, and the generations per trial were 1000. Tests were performed on an Intel Core-i7 
2.40 GHz processor with 8GB of RAM. The test objects (wrapped phase maps), resi-
dues, and reconstructions (continuous phase) are shown in Fig. 3. Notice that at this 
resolution no difference is noticeable between different methods. Therefore, these im-
ages are representative of any of the three algorithms tested. 

The average total length obtained by each metaheuristic is reported in Table 4, as 
well as the average elapsed time, function calls (until convergence or completion of the 
allocated function calls) and mean squared error (MSE) of the reconstructions. The 
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best results are shown in bold typeface. The stopping criterion was to observe a stand-
ard deviation K = 0.7 computed over the top 20% of solutions in any generation. 

 

Fig. 3. Wrapped phase maps (left column, 512�512 pixels). Corresponding residues (center 
column, contrast exaggerated for clarity). Continuous phase obtained by the metaheuristics (right 
column, at this resolution no difference is noticeable between different methods). 

Table 4. Comparison between d-PSO, GA and EDA. Average over 35 trials. 

Algorithm Time (m) Branch cuts total length Generations MSE 
First test object 

d-PSO 1.77 2.57 E+03 1000 0.5028 
Genetic 2.85 2.58 E+03 423.31 0.8363 

EDA 7.11 2.58 E+03 157.11 0.6117 
Second test object 

d-PSO 1.32 2.20 E+03 1000 0.3204 
Genetic 1.39 2.25 E+03 317.08 0.4573 

EDA 2.50 2.28 E+03 132.6 0.5218 
Third test object 

d-PSO 1.81 2.02 E+03 1000 0.0665 
Genetic 0.68 2.14 E+03 130.08 0.1397 

EDA 3.02 2.07 E+03 89.62 0.0434 

 
In Table 4 it can be seen that the three different metaheuristics obtained similar re-

sults in terms of average total distance of branch cuts. The lowest average total length 
was obtained by d-PSO on the three test images. This algorithm also required the low-
est execution time in two of the three test objects (first and second). However, the 
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stopping criterion was never reached by d-PSO, and it consumed the total of allocated 
generations in every case. In contrast, the GA converged at less than half of the total 
generations available, and the EDA, at less than a quarter. In other words, the EDA 
converges much more quickly, but each of its iterations requires more execution time. 
The behavior of the PSO algorithm is the opposite, and the GA is in the middle of 
these two extremes. 

In order to confirm the statistical significance of the differences observed between 
the results of the algorithms, and provided that our experiments fit the conditions of a 
randomized complete block design, the Friedman test (a two-way analysis of variance 
on ranks) [20] was performed on the results from the 35 experimental trials. In this 
test, the null hypothesis (ℎE) is that the difference in the performance of the algorithms 
is not statistically significant. Table 5 shows the results of the statistic, the correspond-
ing p-values and the test conclusion at a significance level of ∝= 0.05. 

Table 5. Friedman test over 35 trials per test object. 

Test object Statistic P-value Result (∝= O. OP) 
Fitness (total length of branch cuts) 

1 1.6 0.4496 Accept ℎE 
2 10.34 0.0057 Reject ℎE 
3 27.83 9.05E-07 Reject ℎE 

Execution time 
1 55.6 8.44E-13 Reject ℎE 
2 46.69 7.28E-11 Reject ℎE 
3 51.6 6.24E-12 Reject ℎE 

Generations (function calls) 
1 62.91 2.17E-14 Reject ℎE 
2 70 6.30E-16 Reject ℎE 
3 52.63 3.73E-12 Reject ℎE 

 
The Friedman test was applied on our 35 observations of fitness (total branch cuts 

length); execution time; and generations (function calls), for each of the three test im-
ages. As can be seen, the Friedman test rejects the null hypothesis in the majority of 
the cases. In other words, in the great majority of cases, there is statistical evidence to 
accept the observed differences between the algorithms reported in Table 4. 

Combining the results in Table 4 with the statistical tests in Table 5, important con-
clusions can be formulated. First, regarding the average fitness measures (third column 
in Table 4), we consider that the differences are relatively small (and for one test object 
not statistically significant). Thus, it can be concluded that there is no clear advantage 
of any method over the rest with respect to the fitness produced; the algorithms are 
equally effective. In contrast, the differences in the average execution times (second 
column in Table 4) are quite substantial. As said before, the d-PSO algorithm is the 
fastest, the EDA the slowest, and the GA is somewhat in the middle. Finally, substan-
tial and significant differences are also observed in the number of Generations required 
by the algorithms. Here d-PSO is the least efficient, the EDA is the most efficient and 
the GA is again in the middle. The three algorithms produced good quality solutions 
(small reconstruction MSE), but it is important to highlight that these measure is not 
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directly optimized by the algorithms, since their fitness function was formulated in 
terms of the total branch cuts length only. 

5 Conclusions 

The problem of branch cuts was formulated in terms of the combinatorial TSP, in order 
to obtain the benefits gained from years of research on the subject and the use of heu-
ristic techniques to solve it. The success of this novel formulation was demonstrated 
through the application of three different types of metaheuristics for optimization. The 
compared techniques are representative of different metaheuristic families: bioinspired, 
genetic and estimation of distributions algorithms. The Multinomial Estimation of 
Distribution Algorithm (MEDAL) is a novel formulation of an EDA, created to work 
with discrete values. 

These metaheuristics were applied to solve the branch cuts phase unwrapping prob-
lem and these were compared based on their efficiency. The algorithms were tested on 
three simulated images, demonstrating a fast and efficient reduction of the total branch 
cuts length and offering better unwrapping results than the initial solutions. Fewer 
pixels were used as barriers, and smooth continuous phase maps with minor deformi-
ties were obtained. All three techniques proved to be efficient, finding better and al-
most equivalent solutions. Therefore, we consider that they are equally effective in 
solving this problem. 

The fastest algorithm was d-PSO, followed by GA and then MEDAL, with clear and 
significant differences. On the other hand, MEDAL required substantially fewer gener-
ations to converge; on average, it required almost 10 times fewer generations than d-
PSO, which did not satisfy the stopping criterion in any of the tests. Thus, with respect 
to the efficiency of the algorithms, we are faced with contradicting evidence. 

Nevertheless, considering that the execution time is dependent on computer charac-
teristics, programming skills, etc., but the number of generations is an objective meas-
ure, we conclude in favor of the MEDAL as the most efficient. This conclusion is also 
influenced by the fact that the MEDAL has no control parameters to be adjusted and 
therefore it is the most practical for a user to employ. 

In future work, the methods studied herein will be employed on real data, combin-
ing structured light techniques (to model the objects) with phase shifting to demodulate 
the phase. Also, the possibility of employing different local techniques to generate 
different initial solutions will be explored. Based on the results reported, the MEDAL 
metaheuristic will be considered, because it proved the most efficient on this problem. 
The experiments presented provide us with the knowledge to make this informed deci-
sion, which was not possible prior to the realization of this work. However, extensive 
testing on real data must be performed before we can conclusively recommend a par-
ticular method. The MEDAL metaheuristic will be tested in other applications such as 
discrete hyper-parameter tuning of classifiers. 
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