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Abstract. Metaheuristics are employed for the solution &f pfnase unwrapping
problem (for 3D object reconstruction) by theanch cuts method, posed as an
analogous of the traveling salesman problem, wisiegin NP-hard decision prob-
lem. The metaheuristic algorithms carry out a gldearch for the optimal con-
figuration of the so-called branch cuts which cepends to a pairing of discon-
tinuities with opposed sign in the wrapped phasp.raree representative algo-
rithms of different metaheuristic families are cargd: discrete Particle Swarm
Optimization (from bioinspired algorithms), Gene#dgorithms (from evolu-
tionary algorithms) and a novel Estimation of Diaftion Algorithm presented
in this work that follows a Multinomial distributio These metaheuristics are
comparatively evaluated according to the qualityhef solutions achieved, exe-
cution time and computational cost, with the ainbaofiding a robust and auto-
mated algorithm competitive against traditional moels.
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1 Introduction

The phase of a signal is often defined within tisgpal values only, either iG—m, 7]

or (0,2x], and it is called true or wrapped phase [1]. lactical applications such as

3D object reconstruction, it is necessary to obth& phase as a continuous function
through a process known as phase unwrapping, whiehtechnique used to remove
the embedded discontinuities in wrapped phase 1fij[. The process must detect

the 2rr discontinuities in the phase and add or subacan integer number of times

to compensate for each discontinuity in subseqpeints [3]-[8].

Phase unwrapping algorithms in 2D are most typjcdiVided into two categories:
path following or branch cuts methods, and minimuwnm methods [2]. The branch
cuts method isolates those regions of a phase hadmte affected by discontinuities.
This is done by the use of barriers or branch ¢ht, connect two discontinuity loca-
tions, thus achieving path independence [7]. Sitcetroduction in Goldstein’s work
in 1988 [9], the branch cuts method has been ingatdwy the incorporation of artifi-
cial intelligence techniques (particularly soft qmting) [4],[10]. In this work, the
branch cuts problem is posed as a computationahigattion problem and a compara-
tive evaluation between three types of metahearatorithms is carried out in order
to determine their advantages in the solution af paoblem. A discrete version of a
very popular bio-inspired algorithm, known as RdgtiSwarm Optimization (d-PSO),
is compared against an evolutionary algorithm (@erdgorithm) and against a novel
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estimation of distribution algorithm: the MultinoahiEstimation of Distribution Algo-
rithm (MEDAL). These algorithms are conceptuallyweifferent, but whether or not
their differences may represent an intrinsic adsvgatfor any of them, is yet to be de-
termined. The goal of this paper is to answer dueistion.

The rest of this paper is organized as followsti8r@ provides the required mate-
rial to understand the formulation of the branctsauethod as an optimization prob-
lem. Section 3 briefly presents the different alifpons that are compared. Our experi-
mental methodology and results are reported ini@edt Finally, Section 5 presents
our conclusions and directions for future work.

2 Phase Unwrapping as Optimization Problem

Ghiglia and Pritt explain that there are relativédyv inconsistencies along a closed
path within a 2D wrapped phase map [2]. These isistencies are identified at points
where: ¥ Ay (p;) = £2m, where Ay (p;) represents the wrapped phase gradient at
point p; e {P} andM is the total amount of points along the pAtf2][11][12]. It fol-
lows that there are inconsistencies with positiekapty (27r) and with negative polari-
ty (—2m). In 1988 Goldstein used the teresidue to describe such inconsistencies and
described a method where the charge (sign) of ezgilue must be balanced out by
connecting pairs of residues with opposing poksitithis method is known as the
branch cuts method [9]. In practice, the residuescamputed as the sum of the gradi-
ents along @ x 2 path (counterclockwise) given in Egns. (1) to @henever said
sum gives a positive result, a positive residuestexat position(r, c¢); if the sum is
negative, a negative residue is present; if the isurero then there is no residue:

Ap(1) = sign{y(r +1,¢) —9(r,c)}, (1)
Ap(2) = sign{yp(r + 1,c+ 1) —p(r + L, o)}, )
Ap(3) = sign{y(r,c+1) —p(r+ Lc+ 1}, 3)
Ap(4) = sign{yp(r,c) = P(r,c + 1} (4)

Once the residues have been identified these amgected in pairs of opposing po-
larity, forming barriers called branch cuts [9].€fhthe phase can be unwrapped along
any path without touching these barriers. Manyedéht branch cuts configurations
can be formed, affecting the complexity of the ghaawrapping process differently.
Thus, the phase unwrapping problem is converteddrroblem of finding the pairing
of residues that produce the optimal branch cut§igoration.

Two branch cuts configurations are shown in FigAd.can be seen, the pairing of
residues in Fig. 1b produced four branch cuts Wikktmake phase unwrapping diffi-
cult; the barriers are long and badly arrangeds&ny each other). In contrast, the
pairing in Fig. 1c also produces four branch cutstheir configuration is much more
favorable for the phase unwrapping; the barrieesshiorter and better distributed. No-
tice that one of the residues in both configuratibas been joined with the border of
the phase map. This is acceptable since there always an equal amount of positive
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and negative residues [7]. An efficient algorithon this problem must find the pairing
of residues that produces the branch cuts confiigaravith minimum total length.
Then the data can be unwrapped by the flood fiibathm [11].

. “e «° ’
[+] /

b] ° cl <

Fig. 1. Two different branch cuts configurations. a.- A séresidues. b.- Unfavorable pairing
produces a bad configuration. c.- A different pajrproduces an optimal configuration.

The optimization of the branch cuts problem is agauis to a combinatorial prob-
lem known as the Traveling Salesman Problem (T&Rjch can be summarized as
follows [4, 7]: a salesman must visitcities by means of the shortest possible path; he
must visit each city only once and return to thgahcity in the end. When the number
of cities increases, the TSP cannot be solved iynpmial time since its complexity
grows exponentially (it becomes an NP-hard problehfie branch cuts problem is
formulated as a TSP problem if the residues areitiess and the sum of the lengths of
the branch cuts are the path that the salesmaeldr{8]. Metaheuristics are effective
optimization methods that can be used to tackkedbit of problems.

3 Optimization Metaheuristicsfor Phase Unwrapping

The different metaheuristic techniques that arepgamed in this work all share a com-
mon codification of the candidate solutions. Aniwdual solution consists in a pairing
of residues of opposing polarities (or one residad one border position). This can
always be reorganized as a vector of positive vesichnd a vector of corresponding
negative residues paired with the positive oneartiBy from one solution, new solu-
tions can be generated by keeping the vector afipesesidues fixed and changing
the position of the negative residues [4]. Thi8listrated in Fig. 2 with a small num-
ber of residues and wherein some border pointsesepted by ‘B’s are included.

All of the metaheuristics discussed herein maintaso-called population of solu-
tions that they employ to perform their searchhi@ $olution space. An initial solution
can be found, for example, by application of a daripcal search method known as
the nearest neighbor method [7]. From this, a pmr of new solutions is generated
automatically by randomly selecting and reordeohg elements in the vector of neg-
ative residues. Repeated application of this pcesates an initial population.

In order to guide their search for a global optimute algorithms evaluate the
quality of the individual solutions that are exm@dr Said quality is quantitatively cap-
tured by a so-called fitness functigh, In the case of the branch cuts problem the op-
timal solution is the branch cuts configuratiomafiimal total length. Thus, the fitness
function is simply the sum of the lengths (distabeéween each pair of residues in a
solution) of branch cutsX(y) is a residue location), as seen in Eq. (5):

f=E0E = xD? + O -y ®)
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Positive residues |1+ |2+ [3+ |4+ |58 |68 [78 |8B |

v |2 (s [+ |5 [e [7 e |
Negativeresidues |[1- [a- [& e |2- [38 |7 |5 |

| _
ordered differently (s |a (v |a |6 [ |2 |
[z [38 |6 |a [5 [1- [7- & |

Fig. 2. Codification of solutions. The positive residues kept in fixed positions; reordering of
the negative residues (paired with the positivedtess) produces other solutions.

3.1 Bioinspired Algorithm

The particle swarm optimization algorithm (PSO) wihesveloped by Kennedy and
Eberhart [12] as a population-based optimizatiothod, inspired on the social behav-
ior of bird flocks. Its objective is to generateii@asingly better candidate solutions in
an iterative way to reach the optimum [13]. Du¢h® small number of its parameters,
its rapid convergence and its simple implementat®®0 shows better performance
than some evolutionary algorithms [13]. PSO is Hase the idea ob-dimensional
particles moving inside a swarm [4]. The informatithat thej-th particle uses to
move through the search space is the current wdliie positionU;, its velocityV;, its
best past positioR;, and the best global position of the swam

Table 1. Pseudocode of the PSO algorithm.

PSO algorithm
1 Initialize population oD-dimensional particles with random positions anidbeigies
2 Start the loop
3: Evaluate the quality of each particle (solutiortgading to the fithess function.
4 Compare each solution with i if the current value is better,
) then update®; andU; with the current solution values.
5: Identify the best solution and assign %o
Update the velocity and the position of each plartic
6: Vi = (w x V) + [Cy X Rand X (Pf — UF)] + [C, X Rand x (Pf — Uf)]
UiHl — Uit + Vit+1
7: If the stopping criterion is met, stop the cycle.

8: End theloop

The original process to implement PSO is describetable 1 [14], where denotes
the iteration number;; andC, are non-negative learning factors, the functitemd
generates a random number in (0,1) an called the inertia factor. A more detailed
explanation of these variables is found in [14]thHis work, a discrete variant of the
algorithm, termed d-PSO is used because it betsethe branch cuts problem. The
modifications are detailed in [4]. In d-PSO theogity represents a set of permutations
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[4]; the permutations modify the position vectagamranging its values. In this work
the adjustment operator is followed in the same asin [14].

3.2 Evolutionary Algorithm

The genetic algorithm is also a population-basebrigue inspired by the mechanisms
of natural selection, genetics and evolution oinljvbeings that has proved effective,
quick and robust in many optimization problems [I@Eembers of the population are
called chromosomes [16], and they are formed bgtaotD genes inD-dimensional
space. Chromosomes perform their own adaptatiatiesfies to evolve through the
search space and reach the global optimum [7]. v generation occurs when three
operators that update the population are applielzcBon, crossover and mutation
[16]. The basic steps of the GA are described inlf 2.

Table 2. Pseudocode of the Genetic Algorithm.

Genetic Algorithm
Initialize chromosome population, probability opreductionP, and mutatior?,,.
Start the loop
Evaluate the quality of each solution, accordinthtfitness function.
Use a selection operator to choose two parent aisomes.

If P,,,, Apply the mutation operatoEnd if
Accept the new solution if its quality is better.

If the stopping criterion is met, stop the cycle.

1
2
3
4:
5: If P,., Apply the crossover operatdEnd if
6
7
8
9

End theloop

The selection operator chooses a pair of chromosdorecrossover, allowing their
genes to pass to the next generation [16]. Thesowas operator combines some of the
genes of each of the parent chromosomes; both csmmes are split in the middle
and the four parts are combined to form two offspii7]. Subsequently, the quality of
the new chromosomes is measured and only thesbpassed on to the next generation
[17]. The mutation operator forms a new chromostimeugh alterations of a chromo-
some [7]. The heuristitwors is used for this purpose [18].

3.3  Multinomial Estimation of Distribution Algorithm

An estimation of distribution algorithm (EDA) is population-based optimization
technique that tracks the statistics of a poputatid candidate solutions [19]. The
search for the global optimum is carried out byatirey new and better solutions
through these statisticse., recreating the population iteratively and updatine sta-
tistics based on the best individuals in each gaiwer [19]. This concept was taken as
guidance to design a multinomial distribution ED# fliscrete values, since this dis-
tribution models the probability df categories im trials, which fits well the branch
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cuts problem. The steps followed by this Multinohitatimation of Distribution Algo-
rithm (MEDAL) are shown in Table 3.

Table 3. Pseudocode for the Multinomial Estimation of Diafition Algorithm.

MEDAL algorithm

1 Initialize a population of random candidate solo&@x;}°,i e[1, N].

2 Start the loop

3 Evaluate each solution according to the fitnesstfon.

4; Select the bes¥ individuals from the populatiof;}t, (M < N).

5 Estimate a multinomial distribution from the settd individuals.

6 Generate a new populati¢x;}**1 sampling from the multinomial distribution.
7 If the stopping criterion is met, stop the cycle.

8 End theloop

During execution of the method, new populationsgaeerated with new probabili-
ties of occurrence per position. The objectivehit tall individuals converge to one,
i.e., the probability of occurrence of a value ipasition becomes equal to one (or as
high as possible). When this happens, the algoréhds. Due to the almost null exist-
ence of parameters to be tuned, the EDAs are cenesichgile and efficient algorithms,
achieving convergence in a short time despite thasceptibility to get stuck in local
optima.

4 Experimental Results and Discussion

The algorithms discussed above were implementesbiice the branch cuts problem
and obtain an effective 3D reconstruction of tdgeots. Each of three test objects is a
512 x 512 pixels image generated through the MATLABaks function. For each of
these, a wrapped phase map was obtained througdrdtamgent function. The resi-
dues in each map were identified by applicatiokEqgs$. (1)-(4) as explained in Section
2. Different residue sets were obtained for each:rb&11 residues in the first image
(757 positives, 754 negatives); 995 residues insteond image (493 positives, 502
negatives); 1542 residues in the third image (7@4tives, 770 negatives). These resi-
dues were given to each metaheuristic, togethdr ait initial population of random
solutions. This process was repeated 35 timesgseirhage to provide statistical sup-
port to our conclusions. ldentical initial poputats were given to all algorithms in
each trial to ensure a fair comparison. The inpiapulations included 500 solutions
each, and the generations per trial were 1000sWeste performed on an Intel Core-i7
2.40 GHz processor with 8GB of RAM. The test olgeetrapped phase maps), resi-
dues, and reconstructions (continuous phase) anersin Fig. 3. Notice that at this
resolution no difference is noticeable betweeneddht methods. Therefore, these im-
ages are representative of any of the three atgosittested.

The average total length obtained by each metadteuis reported in Table 4, as
well as the average elapsed time, function calisil(convergence or completion of the
allocated function calls) and mean squared erroa8EMof the reconstructions. The
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best results are shown in bold typeface. The stapgpiiterion was to observe a stand-
ard deviatioro = 0.7 computed over the top 20% of solutions in any getien.

Fig. 3. Wrapped phase maps (left column, ¥BA2 pixels). Corresponding residues (center
column, contrast exaggerated for clarity). Contirsiphase obtained by the metaheuristics (right
column, at this resolution no difference is notldesdbetween different methods).

Table 4. Comparison between d-PSO, GA and EDA. Average 85drials.

Algorithm Time (m) Branch cutstotal length Gener ations M SE
First test object
d-PSO 1.77 2.57 E+03 1000 0.5028
Genetic 2.85 2.58 E+03 423.31 0.8363
EDA 7.11 2.58 E+03 157.11 0.6117
Second test object
d-PSO 1.32 2.20 E+03 1000 0.3204
Genetic 1.39 2.25 E+03 317.08 0.4573
EDA 2.50 2.28 E+03 132.6 0.5218
Third test object
d-PSO 1.81 2.02 E+03 1000 0.0665
Genetic 0.68 2.14 E+03 130.08 0.1397
EDA 3.02 2.07 E+03 89.62 0.0434

In Table 4 it can be seen that the three diffeneataheuristics obtained similar re-
sults in terms of average total distance of branh. The lowest average total length
was obtained by d-PSO on the three test images. algorithm also required the low-
est execution time in two of the three test objdtitst and second). However, the
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stopping criterion was never reached by d-PSO,itacohsumed the total of allocated
generations in every case. In contrast, the GA eqged at less than half of the total
generations available, and the EDA, at less thauoater. In other words, the EDA
converges much more quickly, but each of its iterst requires more execution time.
The behavior of the PSO algorithm is the opposite] the GA is in the middle of
these two extremes.

In order to confirm the statistical significancetbé differences observed between
the results of the algorithms, and provided thatexperiments fit the conditions of a
randomized complete block design, the Friedman(gesivo-way analysis of variance
on ranks) [20was performed on the results from the 35 experiaténals. In this
test, thenull hypothesisk,) is that the difference in the performance ofatgorithms
is not statistically significant. Table 5 shows tlesults of the statistic, the correspond-
ing p-values and the test conclusion at a signifiedevel ofx= 0.05.

Table5. Friedman test over 35 trials per test object.

Test object Statistic P-value Result (x= 0.05)
Fitness (total length of branch cuts)
1 1.6 0.4496 Accepthy,
2 10.34 0.0057 Rejecth,
3 27.83 9.05E-07 Rejecth,
Execution time
1 55.6 8.44E-13 Rejecth,
2 46.69 7.28E-11 Rejecth,
3 51.6 6.24E-12 Rejecth,
Generations (function calls)
1 62.91 2.17E-14 Rejedt,
2 70 6.30E-16 Rejecth,
3 52.63 3.73E-12 Rejecth,

The Friedman test was applied on our 35 obsenatidrfitness (total branch cuts
length); execution time; and generations (functats), for each of the three test im-
ages. As can be seen, the Friedman test rejectsuthbypothesis in the majority of
the cases. In other words, in the great majoritgasfes, there is statistical evidence to
accept the observed differences between the algasiteported in Table 4.

Combining the results in Table 4 with the statatiests in Table 5, important con-
clusions can be formulated. First, regarding therage fitness measures (third column
in Table 4), we consider that the differences alatively small (and for one test object
not statistically significant). Thus, it can be ctuted that there is no clear advantage
of any method over the rest with respect to theefis produced; the algorithms are
equally effective. In contrast, the differencesttie average execution times (second
column in Table 4) are quite substantial. As sabke, the d-PSO algorithm is the
fastest, the EDA the slowest, and the GA is soméwhthe middle. Finally, substan-
tial and significant differences are also obseriveithe number of Generations required
by the algorithms. Here d-PSO is the least effigire EDA is the most efficient and
the GA is again in the middle. The three algorithmneduced good quality solutions
(small reconstruction MSE), but it is importanthighlight that these measure is not
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directly optimized by the algorithms, since thdinéss function was formulated in
terms of the total branch cuts length only.

5 Conclusions

The problem of branch cuts was formulated in teofrthe combinatorial TSP, in order
to obtain the benefits gained from years of redearcthe subject and the use of heu-
ristic techniques to solve it. The success of tugel formulation was demonstrated
through the application of three different typesradtaheuristics for optimization. The
compared techniques are representative of differetaheuristic families: bioinspired,
genetic and estimation of distributions algorithriitie Multinomial Estimation of
Distribution Algorithm (MEDAL) is a novel formulath of an EDA, created to work
with discrete values.

These metaheuristics were applied to solve thecbrants phase unwrapping prob-
lem and these were compared based on their efigiefhe algorithms were tested on
three simulated images, demonstrating a fast diaesit reduction of the total branch
cuts length and offering better unwrapping restln the initial solutions. Fewer
pixels were used as barriers, and smooth continpbase maps with minor deformi-
ties were obtained. All three techniques provedtbeacefficient, finding better and al-
most equivalent solutions. Therefore, we consithat they are equally effective in
solving this problem.

The fastest algorithm was d-PSO, followed by GA #rah MEDAL, with clear and
significant differences. On the other hand, MEDAlquired substantially fewer gener-
ations to converge; on average, it required almi@stimes fewer generations than d-
PSO, which did not satisfy the stopping criteriorany of the tests. Thus, with respect
to the efficiency of the algorithms, we are facathwontradicting evidence.

Nevertheless, considering that the execution tendependent on computer charac-
teristics, programming skills, etc., but the numbggenerations is an objective meas-
ure, we conclude in favor of the MEDAL as the mefficient. This conclusion is also
influenced by the fact that the MEDAL has no cohparameters to be adjusted and
therefore it is the most practical for a user tpkay.

In future work, the methods studied herein willdraployed on real data, combin-
ing structured light techniques (to model the ofsjpwith phase shifting to demodulate
the phase. Also, the possibility of employing diffiet local techniques to generate
different initial solutions will be explored. Based the results reported, the MEDAL
metaheuristic will be considered, because it prabedmost efficient on this problem.
The experiments presented provide us with the kedge to make this informed deci-
sion, which was not possible prior to the realatof this work. However, extensive
testing on real data must be performed before wecoaclusively recommend a par-
ticular method. The MEDAL metaheuristic will be teed in other applications such as
discrete hyper-parameter tuning of classifiers.
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